
Software Development
The Big Picture

• Software Development is more than
programming.

• Stages of software development.

• Requirements gathering

• Design Stage

• Testing

• Installation

• Maintenance

• Software Life Cycle

• The focus of this course.

• There is a job known as Systems Analyst

• What are requirements?

• What is design?

• Why two separate stages?

#1 #2

• Making decisions too early is a problem.

• Balance competing requirements.

• Design cannot begin without requirements.

• Iterations between and within the steps can
occur.

• We need an SQL database

• We need a system to organize inventory

• Runs under Windows OS

• Must be able to generate daily reports

• Must be able to handle 100 transactions
per second

• Must run on our existing computer system

• Make it as cheap as possible

• We will want demos during development
every two weeks

• We need some software to solve our
problem

• Must be usable by someone with a grade
six education

• Must implement all current legal
expectations for this type of system

• Must use the most modern security
available

• A System Analyst was asked to develop a
computer system to store different forms
in a database. The office that managed the
forms was having a lot of trouble keeping
track of the different forms. The forms
were all similar and were being filed in the
wrong places or lost.

Sample Problem

• Build the system they want

• Colour the forms so they cannot be
mistaken (this was the chosen solution)

Solutions

• http://www.monologuer.com/wp-content/uploads/big-painting.jpg

• http://stackoverflow.com/questions/1936919/what-is-a-good-example-to-show-
to-a-non-programmer-to-explain-what-programming-l

• http://www.cafepress.com/+proud_systems_analyst_white_tshirt,84577362

• http://www.artofbi.com/index.php/2010/03/requirements-gathering-change-
management-techniques/

• http://agsc.ca/servcies_ba.html

• http://iamanush.com/category/linux/

• http://en.wikiversity.org/wiki/File:ComputerTesting.jpg

• http://badbanana.typepad.com/weblog/2008/09/index.html

• http://www.freedigitalphotos.net/

• http://www.dilanchian.com.au/index.php?
option=com_content&task=view&id=90&Itemid=144

• http://visualpop.wordpress.com/2008/01/26/making-sense-of-visual-culture/

http://www.monologuer.com/wp-content/uploads/big-painting.jpg
http://www.monologuer.com/wp-content/uploads/big-painting.jpg
http://stackoverflow.com/questions/1936919/what-is-a-good-example-to-show-to-a-non-programmer-to-explain-what-programming-l
http://stackoverflow.com/questions/1936919/what-is-a-good-example-to-show-to-a-non-programmer-to-explain-what-programming-l
http://stackoverflow.com/questions/1936919/what-is-a-good-example-to-show-to-a-non-programmer-to-explain-what-programming-l
http://stackoverflow.com/questions/1936919/what-is-a-good-example-to-show-to-a-non-programmer-to-explain-what-programming-l
http://www.cafepress.com/+proud_systems_analyst_white_tshirt,84577362
http://www.cafepress.com/+proud_systems_analyst_white_tshirt,84577362
http://www.artofbi.com/index.php/2010/03/requirements-gathering-change-management-techniques/
http://www.artofbi.com/index.php/2010/03/requirements-gathering-change-management-techniques/
http://www.artofbi.com/index.php/2010/03/requirements-gathering-change-management-techniques/
http://www.artofbi.com/index.php/2010/03/requirements-gathering-change-management-techniques/
http://agsc.ca/servcies_ba.html
http://agsc.ca/servcies_ba.html
http://iamanush.com/category/linux/
http://iamanush.com/category/linux/
http://en.wikiversity.org/wiki/File:ComputerTesting.jpg
http://en.wikiversity.org/wiki/File:ComputerTesting.jpg
http://badbanana.typepad.com/weblog/2008/09/index.html
http://badbanana.typepad.com/weblog/2008/09/index.html
http://www.freedigitalphotos.net
http://www.freedigitalphotos.net
http://www.dilanchian.com.au/index.php?option=com_content&task=view&id=90&Itemid=144
http://www.dilanchian.com.au/index.php?option=com_content&task=view&id=90&Itemid=144
http://www.dilanchian.com.au/index.php?option=com_content&task=view&id=90&Itemid=144
http://www.dilanchian.com.au/index.php?option=com_content&task=view&id=90&Itemid=144
http://visualpop.wordpress.com/2008/01/26/making-sense-of-visual-culture/
http://visualpop.wordpress.com/2008/01/26/making-sense-of-visual-culture/

Design in General and in Software

Monday, September 13, 2010

• System Design is not Artistic Design

Monday, September 13, 2010

• Design = plan, implementation, interaction

Monday, September 13, 2010

• Implementation reveals design problems

Monday, September 13, 2010

• Routine designs do exist for software

• Original designs tend to be for new things

Monday, September 13, 2010

• Waterfall model

Monday, September 13, 2010

• What worked with the Waterfall model?

Monday, September 13, 2010

• What didn’t work in Waterfall? Knowing
what needs to be done.

Monday, September 13, 2010

• More Waterfall problems. Designers don’t
think that way.

Monday, September 13, 2010

• Design by committee

Monday, September 13, 2010

• Requirements bloat and creep

Monday, September 13, 2010

• Collaboration

Monday, September 13, 2010

• Is collaboration always better?

Monday, September 13, 2010

• Why the change from solo to team design?

Monday, September 13, 2010

• Why the change from solo to team design?

Monday, September 13, 2010

• Cost of collaboration

Monday, September 13, 2010

• Cost of collaboration

Monday, September 13, 2010

• The challenge of conceptual integrity

Monday, September 13, 2010

• When collaboration helps

Monday, September 13, 2010

• The exception - Two person teams

Monday, September 13, 2010

• Software tools for collaboration

Redmine

CVS - Concurrent Versions System

Monday, September 13, 2010

• Reference: The Design of Design by
Frederick P. Brooks, Jr., Addison-Wesley,
2010.

Monday, September 13, 2010

• http://yourdon.com/strucanalysis/wiki/index.php?title=Chapter_5

• http://www.pantherkut.com/2007/10/21/cat-sleeping-on-computer-
screen/

• http://www.britannica.com/blogs/2009/02/optical-illusion-of-the-day-
truck-art/

• http://www.cyberpresse.ca/la-tribune/estrie/200902/16/01-827896-de-
lautoneige-a-la-motoneige.php

• http://thedigitalmagpie.com/post-graduate-certificate/essay

• http://www.wired.com/science/discoveries/news/2008/04/dayintech_0404

• http://qwickstep.com/search/francis-crick-and-james-watson.html

• http://www.freedigitalphotos.net/

• http://morguefile.com/

• http://www.sxc.hu/

Monday, September 13, 2010

http://yourdon.com/strucanalysis/wiki/index.php?title=Chapter_5
http://yourdon.com/strucanalysis/wiki/index.php?title=Chapter_5
http://www.pantherkut.com/2007/10/21/cat-sleeping-on-computer-screen/
http://www.pantherkut.com/2007/10/21/cat-sleeping-on-computer-screen/
http://www.pantherkut.com/2007/10/21/cat-sleeping-on-computer-screen/
http://www.pantherkut.com/2007/10/21/cat-sleeping-on-computer-screen/
http://www.britannica.com/blogs/2009/02/optical-illusion-of-the-day-truck-art/
http://www.britannica.com/blogs/2009/02/optical-illusion-of-the-day-truck-art/
http://www.britannica.com/blogs/2009/02/optical-illusion-of-the-day-truck-art/
http://www.britannica.com/blogs/2009/02/optical-illusion-of-the-day-truck-art/
http://www.cyberpresse.ca/la-tribune/estrie/200902/16/01-827896-de-lautoneige-a-la-motoneige.php
http://www.cyberpresse.ca/la-tribune/estrie/200902/16/01-827896-de-lautoneige-a-la-motoneige.php
http://www.cyberpresse.ca/la-tribune/estrie/200902/16/01-827896-de-lautoneige-a-la-motoneige.php
http://www.cyberpresse.ca/la-tribune/estrie/200902/16/01-827896-de-lautoneige-a-la-motoneige.php
http://thedigitalmagpie.com/post-graduate-certificate/essay
http://thedigitalmagpie.com/post-graduate-certificate/essay
http://www.wired.com/science/discoveries/news/2008/04/dayintech_0404
http://www.wired.com/science/discoveries/news/2008/04/dayintech_0404
http://qwickstep.com/search/francis-crick-and-james-watson.html
http://qwickstep.com/search/francis-crick-and-james-watson.html
http://www.freedigitalphotos.net
http://www.freedigitalphotos.net
http://morguefile.com
http://morguefile.com

Design in General and in Software
Part II

• Rational versus Empiricism

-Rationalists believe you can design something solely by thinking about it. Empiricists believe
that thought is not enough. They believe that people will inevitably make mistakes in defining
the design. To address this they use prototyping, early user testing, iterative implementation
testing on a large number of test cases, and regression testing after changes are made.

• User and Use models

-Describe what you know about the user of the software and how the software will be used.
-Often a good idea to start by writing this down (although it isn’t often done).
-They allow you to think about the problem in detail and improve the quality of the design.
-All designers have a user and use model but it may subconscious (not explicit).
-Unless they are explicit, different designers will make different assumptions about the
design

• What if there is no user information?

-Once you try to build user and use models it becomes apparent that there is a lot that the
designer doesn’t know about the user.
-This forces you to ask questions earlier in the process.
-Q: What do you do when you cannot get the information?
-A: Guess. It’s better to have a poor assumption than no assumption. A poor assumption is
explicit so you are aware of it and can fix it later if it is wrong. You will make the assumption
anyway so it is better to make it explicit than leave it vague.

• Budgeted Resources

Millimetres

Memory
Bandwith

Seconds

Days

Memory

Pages of
Text

Power

Heat

Water
Politics

-Something used during development which is scarce and is rationed.
-Popular industrial measures are cost or performance to cost ratio although these are often
not used as much as they are talked about.
-Students often get overly enthusiastic about minor performance optimizations.
-Surrogates are often used instead of cost. Lines of code can describe programmer
productivity, hours of testing can describe how few bugs are left.

• Budgeted Resources

-The budgeted resource can change in the middle of a design. What if your competitor
releases a product with twice the memory of yours during your design process? What if your
chip supplier suddenly makes a new model which is twice as fast.
-Explicitly identify budgeted resources and track them. Let the design team know what they
are and the status of them during the project. Control them carefully and be cautious about
using them up.

• Constraints

-Constraints are both good and bad. They shrink the design space but they limit the choices
which the designer can make.
-Having no constraints actually makes designing more difficult.

• Types of constraints

-When working with users you need to determine if the constraints are real or not.
-Real constraints need to be accepted.
-Obsolete constraints are normally not important due to technological advancement.
-Misperceived constraints are ones which the clients believe are important but are not.
-There are also intentional constraints which are not necessary to the design but are
applied.These don’t show up in software very often. They occur in artistic designs.

• Exemplars

-Definition: A typical example.
-They provide safe models for designers. They contain implicit lists
 of design tasks and features. The lead away from potential mistakes
 and act as a starting point for radical new designs.
-A good example is the current GUI standard. If you were making a
 new graphical interface would it be a good idea to ignore those that
 currently exist?

• Without exemplars you have only your
own experiences.

-By examining other designer’s solutions you can learn how they
 solved problems and benefit from their experiences.
-It isn’t lazy to use existing designs which have been proven to work
 well. It is knowledge of your discipline.
-It is not unoriginal to use exemplars. Originality is not an excuse for
 ignorance of your discipline.

• Design Process or Design Innovation

-Product process attempts to ensure quality through the development
and maintenance process used to build it.
-Innovative or inspired design says that good software is more a
factor of good designers than of process.
-Is process a method to try and force mediocre designers to achieve
acceptable results?

• A lot of great products have been made
outside of the normal design process.

iPhone

Unix

Apple
Interface

Pascal

Fortran

Python

Atomic
Bomb

Nuclear
Submarine

Penicillin

-Each of these was made by a small team which was intentionally set
apart from the normal production process.
-This may not guarantee success but it raises some important
questions.

• Does product process limit great design?

-Process is used to order the development of new products.
-It is conservative by nature. It is easier to create similar but slightly different things than it is
to create something very unusual and innovative. The innovative ideas don’t fit into the
framework of the process.
-The purpose is to create predictable results for the next product. Great designs are often
not easy to predict.

• Process addresses the past problems.

-When designing something new the processes which worked in the past may no longer be
appropriate.

• Process is veto oriented

-It is designed to block bad ideas and catch oversights. It aims to
inhibits products that wont sell, cost too much, and to limit functions
and schedules which cannot be met.
-Corporate process control restricts products which might compete
with your current products.

• Process is driven by consensus.

-The process is typically driven by consensus of the experts(committee).
-Experts are expected to avoid mistakes in their area of expertise. They aren’t there to create
insightful designs.
-If new ideas are not vetoed it is often diluted through compromise.

• Do we need process at all?

Process Innovation

-All the the above problems occur when process inhibits innovation.
-The trick is to allow an innovative design to be developed before too many restrictions are
considered. This gives the basic ideas a chance to be seriously explored without being
prematurely discarded.
-At some point corporate approval is needed, experts need to be consulted, and a schedule
and budget must be created.

• Updated products

-Not all new designs need to be innovative. Many are incremental improvements applied to
existing products.
-Once users have adopted a product the opportunity to change it dramatically is limited. The
users do not want to lose the functionality they currently have with the product.

• Reference: The Design of Design by
Frederick P. Brooks, Jr., Addison-Wesley,
2010.

Requirements Analysis

• Stakeholders

-People affected by the system.
-People who influence the requirements.
-This includes users, managers, those who develop and maintain the system, external bodies
who regulate the company (eg. for safety, taxation).

• What is a requirements document?

-An official statement of the system requirements for the users and developers.
-Other names include ‘functional specification’, ‘requirements definition’, ‘software
requirements specification (SRS)’, ‘safety/reliability plan’.

• How should a requirements document be
written?

-It should be written so that its audience can understand it.
-It can be written using language which reflects the background of the source. If an engineer
provides requirements then it may be written using engineering terms.
-It will be written using natural language.
-Avoid vernacular and attempts to be funny. They become annoying.

• The requirements gathering process.

• Elicitation, Analysis and Negotiation, and
Validation

-Elicitation -discover the requirements by consulting with the stakeholders, from existing
documentation, and domain knowledge.
-Analysis and Negotiation -analyze the requirements and negotiation with stakeholders to
decide which will be accepted. Deal with inconsistencies.
-Check the requirements for consistency and make sure they address all of the problem.

• The Top Ten Requirements Guidelines

-Most organizations have their own methods for dealing with requirements gathering and
documenting but these ten points will always be useful.
-Most of them are simple things you can do to check the quality of the requirements list.

1. Define a standard document structure.

-Readers will become familiar with the format and know how to use it.
-Acts as a checklist for the writer so they don’t accidentally omit something.
-Software templates can be developed to help format the document.

2. Make the document easy to change.

-Writing, reviewing, and distributing new documents is expensive and time consuming. Don’t
make it more difficult than it needs to be.
-If the cost of making changes is too high then changes may be collected and applied in a
batch. This means the document can be out of date while the changes wait to be applied.
-Online versions of the documents can lessen the effect of these problems.

3. Uniquely identify each requirement.

-Give each requirement a unique number.
-They can be referenced through the number in the document.
-The numbers can be used to show which requirements have created other requirements.
For example, “Requirements 3.1 and 3.2 were added to meet the needs of requirement 2.0.”

4. Define policies for requirements management.

-Explicitly tell people what they are expected to do and why it is done.

5. Define templates for requirements description.

-They make the requirement easier to read once the reader understands the format.
-They make gathering and writing easier because they provide a checklist of things to
include.
-This is similar to a standard document structure but it deals with individual requirements
only.

6. Use simple language.

-Simple language is easier to read and understand. You are writing a technical document and
ornate writing makes it more difficult for the reader.
-Be consistent in your description. If you give a name to something then use the same name
all the time.
-Short sentences are easier to understand. Use one idea per sentence.
-Don’t use structures which add nothing to the sentence (eg. However,).

7. Organize requirements inspections.

-A group of people should meet and systematically check for problems in the requirements
document. The requirements engineer (systems analyst) presents each requirement. The
group comments about problems or concerns. The comments are recorded so the problems
can be addressed later.
-It should be a formal meeting, with a Chairperson and an agenda.

8. Define a validation checklist.

-This helps the people validating the requirements identify if something is incorrect.
-Questions include questions such as:
 -are the requirements complete
 -do you understand what the requirements all mean
 -are they ambiguous
 -are there any contradictions

9. Use checklists of requirements problems.

-Identify problems which you have experienced in the past and look for them.
-Things that you could look for include:
 -design choices being listed as requirements
 -combining two requirements into one
 -are there unnecessary requirements
 -is it an ambiguous requirement
This is really suggesting that you should carefully inspect the requirements.

10. Plan for conflicts and their resolution.

-There will always be conflicts or omissions in the gathered requirements.
-Arrange meetings to resolve problems through negotiation. Don’t assume you can solve the
problem without input from the stakeholders.
-All stakeholders may be involved.

• Requirements Engineering: A Good Practice
Guide by Ian Sommerville and Pete Sawyer,
Wiley and Sons, 1997.

Design Document for Fireball
(Play with Fire)

1

• A Design Document for a video game

2

-Play with Fire (initially named Fireball) is a game written for the Playstation 2.
-The design document for the game is 16 pages of text and images.
-The objective of the game is to move a ball of fire around a three dimensional world and
burn different objects.

• The document contains extra information.

Overview
Vision Statement
Branding Information

3

-This includes information for marketing the game.
-A Vision statement and Branding Choices are identified which will often not be found in a
design document.
-An Overview reveals many requirements choices.

• Question: What are the Implicit
Requirements for a game?

4

It should:
-be enjoyable to play for some target audience (casual to hard core)
-challenge the player without annoying them
-engage them sufficiently that they will buy the game
These are true for most games.

• Overview Statements

Fireball is a budget game for PS2.

5

-These give ideas as to the requirements which are specific to this game.
-The platform (PS2) is a design choice but it sounds like it was made early in the design
process. Perhaps before any requirements were considered.
-The budget sale price suggests that the game wont have a huge development budget.

• Overview

The player controls a ball of fire, and
traverses a landscape made of blocks of
different materials. As the player sets fire to
these blocks, they grow hotter, and can set
fire to more and more different types of
blocks. The fireball the player controls can
also rise up in height and the hotter the
player gets, the higher they can jump in this
fashion.

6

-This is a short and concise description of how the game is played.
-The basic gameplay for the entire game is summed up in this paragraph.
-Try to achieve this level of concise description.

• Overview

On each field (level) the player has an
ultimate goal of igniting the torch (brazier)
and thus clearing the field – but the torch is
generally positioned at a high point and out
of reach. The player must use a combination
of platform skills and dynamic environmental
features (for instance, by burning the
supports under the torch down to the
ground) in order to clear the field.

7

-The goal of the game and more detailed gameplay description can be summed in a second
paragraph.

• Overview

Simple, clean cut graphics and controls
combine to give an easy to learn but
engaging play experience.

8

-One more sentence sums the graphical appearance, difficulty of the game, and user
experience.

• Vision Statement

Effortless play originating from a simple
control scheme.
Unique experience – the only game to be
based around setting fires.
Varied solutions to the mini-puzzles as
the player works out the best places to
start fires.
Exploration of small environments.

9

-Provides guidance for the developer as to what kind of experience the user should have
while playing the game (easy to play), the type of game (puzzle), and the scope (small
environments).

• Game Subsystems

Avatar concerns the player’s ability to
negotiate the landscape.
Temperature concerns the ignition of
blocks in the playing field, and how fire
spreads between blocks.
Gravity concerns the collapse of objects
and blocks in the playing field as a result
of fires.

10

-These describe the things which will be controlled by the software.
-They are the components which must be developed.
-In other types of software they can involve things like storing data, using a network,
performing calculations, etc.

• Each subsystem is described in detail.

The player’s Avatar is a glowing ball of
fire, considered to be 1 unit in diameter.
The player’s abilities are as follows:

Move around the environment. The player
turns left and right, and pushes forward to
move (relative controls).

11

-This is so the developers have enough information to implement them.
-The size of the player is described (1 unit).
-The types of motion and how they are implemented (relative to controls)

• Subsystems continued.

Jump up to a (relative) height determined
by the heat of the ball. The characteristics
of this jump are that the player rises
rapidly up to their maximum (relative)
height, and then slowly descend.

12

-Movement requirements are further explained with relative motion selected over absolute
motion.
-Some terms which will need to be clarified at a later time (slowly).

• Subsystems continued.

Burning blocks is achieved simply by
pushing into them. If the player is just
hot enough to ignite a block, they will
need to push into the block for a short
while to start a fire – but if they are
considerably hotter, fires will start just by
them passing by.
...
These are all the player’s abilities.

13

-The method of interaction with objects in the world is explained (burning).
-The final sentence makes it clear that nothing else needs to be considered.

• The Temperature Subsystem

The basis of fire starting rests in a
simple system of temperature based
upon colours. The avatar increases in
heat permanently when it touches a
burning block that is hotter than the
avatar’s current temperature.

14

-It is explained with the same concise detail as the motion subsystem had been.

• The Temperature Subsystem

Colour Jump Height Description

1. Yellow +2 Units Yellow flames; bunsen burner style

2. Orange +4 Units Bright orange flames.

3. Red +8 Units Glowing red with heat haze.

4. Blue +12 Units Blue-white flame, like a blowtorch.

5.White +16 Units Bright white glow – very bright.

15

-When it is appropriate the data can be displayed in a table.
-More graphical information is described in the table. This might considered out of place but
it is related to temperature so perhaps it is in the correct location. Given the short length of
the document this isn’t a large concern.

• User Interface

16

-Since this program was intended to run on a game console the user interface is defined by
the controller. Other systems can have more complex control options which can make the
decisions regarding the interface more difficult.

• The Player’s Goal

The player’s goal is always to move, burn
and melt their way around the environment
in order to reach the torch – a symbolic
brazier item – which they ignite on contact.

Advanced players will attempt to clear the
playing field in the shortest play time,
and/or cause the biggest Chain – achieved
by having large number of blocks burning
at the same time.

17

-In other types of software this would be a description of what the user could expect to
achieve using the software. It would let the reader of the design document know for what
purpose the software was written.
-Instructions regarding more experienced users can be included. Not all users are novices.
You should describe how all users could use the software.

• The Environment

3.1 Components
3.1.1 Blocks
The environment is entirely constructed out of 1 unit cubes
(actually about 4 m per side, therefore 1 unit = 4 m). These
cubes have different colours, and are textured to resemble
specific materials.

3.1.2 Objects
Objects are simply clusters of blocks. For instance, a vertical
column of ten blocks is an object. Four such columns with a
flat plane of blocks across the top is a ‘Table’ object.
Clearly, because objects are made of cubic blocks, they are
abstract in nature, but the player will still be able to make out
what these objects represent.

18

-In more general terms this means the components of the system which the user will interact
with. In other software packages it can involve screens or windows which provide access to
different functions. This lets the user know which operations and associated windows they
can access.
-Notice that sections are numbered for easy reference.

• Complex Behaviours

3.2. Gravity
Gravity always pulls blocks and objects downwards. The gravity
value is 10 units per second per second, with a terminal velocity
of 5 units per second.

3.4. Burning
3.4.1 Ignition
The temperature at any point in the game field (for the
purposes of checking for ignition) is based upon the
temperatures of the surrounding blocks. The process of
determining if any given block ignites is as follows:
· Check for neighbouring blocks of the same material that are
on fire, and have been burning for at least as long as the
ignition time. If they exist, the current block catches fire.
...

19

-The most complex behaviours in the game are how gravity operates and how components
burn. They have their own sections which contain detailed descriptions of the operations.
-Algorithms are described in easy to understand terms. Mathematics are used when
necessary.
-Initial values for parameters are specified.

• Unknown Values

Note
The three parametric values above are the temperature radiation
coefficients (TRC1, TRC2 and TRC3). The values given should be
considered default values – tweaking will be required.

20

-Values which are not known during the system can be tested are clearly indicated. If
something is not known then it should be carefully identified.

• Complex Behaviour Diagrams

21

-Diagrams can be used to represent complex behaviours. If diagrams will help to illustrate a
complex operation then they should be included.
-In this case it illustrates how an object will burn in the game.

• Behaviour Changes in the System

3.4.2 Burning Out
After the Burn Time for a block has expired, the block is
removed from the world completely.
Any blocks or objects that were resting upon that block then fall
down. Thus the shape of the world changes over time as more
objects and blocks burn to nothing.

22

-If the system’s behaviour changes due to the user’s actions then the new behaviour should
be identified.
-This can include menu items being made unavailable (greyed out) or made available,
windows can pop-up, or the operations which keys perform can change (with modal
interfaces).

• Navigating the Interface

4. Structure
4.1. Overview
The game is divided into field lists or Quests which consist
(in general) of six fields. (The term Quest is used in game
documentation, but in the design document the term Field List
is used). The player must play through all six fields to
complete a field list. However, they can exit their current set
of six fields by pressing start and choosing exit from a pause
menu.

23

-If the system has a sequence of operations which must be performed in a given order then
this should be explained.

• System Operation Sequences

24

-State diagrams can be used to illustrate the sequence in which operations are performed
and how different operations are selected.
-Include a description of the states so the reader understands what they all mean.
-Don’t forget a starting and ending state.
-Break the diagram into parts if it is too large to comfortably fit on one page.

• Naming Conventions

6.4.2 Field Filenames
The following filename format is used for fields:

XXXXXXXXXX.XX.XXXX.fsf

The first ten characters are an informal description of the level. The
next two characters represent the Stage (see below). The next four
characters represent the difficulty, either:
· Easy
· Mid
· Hard
· Hell
So an example field filename might be:
Smallhouse.LW.easy.fsf
This allows anyone building field lists to know that the field designer
intends this particular field to be easy to complete.

25

-Specify naming conventions for resources such as files and databases.
-If the name encodes some information then explain how this operates.

• Change Logs

8.Delta Log
Version 1.0
Orange squares represent sales primarily from hardcore gamers, whilst
blue squares represent sales to a mass market audience.
Transition from H2 to C3 or C2 (dotted arrow) is most likely be a male H2
showing the game to friends, and therefore uptake from these vectors will
be lower Conversely, transitions from H3 to C3 or C2 are more likely to be
a friend making a recommendation for purchase, and therefore should help
drive sales.Core design incorporated from Concept version 1.0
Version 1.05
Changed references that read ‘Combos’ to saying ‘Chains’ (i.e. renamed
‘Combos’ to ‘Chains’). Added a section about Chains. Added a Template
section giving advice to field designers.
Version 1.10
Added the concept of ignition time. A block has to have been on fire for a
(short) amount of time (known as the ignition time) before it can set fire to
other blocks. Ignition times added to the block data table. Added reference
to the parameters for the fire effects. (Appendix I in this document). Target
Audience titled ‘Appendix II’.

26

-These show the changes which have been made to the document over time. It is a list of
changes and the reasons for each change.
-It is important to track changes and retain the information for the future.
-This can be an appendix in a paper document. In an electronic document it is usually a
history of changes that can be recalled.

27

• http://www.gamasutra.com/view/feature/1709/
design_document_play_with_fire.php

References

28

http://www.gamasutra.com/view/feature/1709/design_document_play_with_fire.php
http://www.gamasutra.com/view/feature/1709/design_document_play_with_fire.php
http://www.gamasutra.com/view/feature/1709/design_document_play_with_fire.php
http://www.gamasutra.com/view/feature/1709/design_document_play_with_fire.php

Design Document Template

A sample structure for a design document or design specification from R. Pressman.

• Introduction

• Data Design

• Architecture and Component Design

• User Interface Design

• Restrictions, Limitations, Constraints

• Testing Issues

• Supplemental Information

Document Structure

Each of these is described later.

• Goals and Objectives

• Scope

• Context

• Major Constraints

Introduction

-Scope -A description of the software is presented. Major inputs, processing functionality,
and outputs are described without regard to implementation detail.
-Context -The software is placed in a business or product line context.
-Constraints -Any business or product line constraints that will impact he manner in which
the software is to be specified, designed, implemented or tested are noted here.

• Internal software data structure

• Global data structure

• Temporary data structure

• Database description

Data Design

-A description of all data structures including internal, global, and temporary data structures.
-Internal -Data structures that are passed among components.
-Global -Available to major portions of the architecture.
-Temporary -Files created for interim use are described.
-Database -Database(s) created as part of the application.

• Program Structure

• Description of Components and Sub-
Components

• Interface Description

Architectural and Component Design

-Program Structure -Architecture diagrams and alternatives to the selected architecture.
-Description - detailed description of each software component contained within the
 architecture is presented. This includes a description of its processing, interface,
 algorithm, restrictions, data structures, and constraints for each component.
-Interface Description -interfaces to other computers, machines, and humans are described.

• Description of the user interface

• Interface design rules

• Components available

• User Interface Development System

User Interface Design

-Description -Screen images and a description of objects and their actions.
-Design Rules -Conventions and standards used for designing the interface.
-Components -GUI components are listed.
-Development System -system tools and library described.

• Special design issues which impact the
design or implementation of the software
are noted here.

Restrictions, limitations, and constraints

• Classes of Tests

• Expected software response

• Performance bounds

• Identification of critical components

Testing Issues

Test strategy and preliminary test case specification are presented in this section.
-Classes of tests -types of tests to be conducted.
-Expected response -expected results.
-Performance bounds -Special performance requirements.
-Critical components -those which demand particular attention during testing.

• Requirements traceability matrix

• Packaging and installation issues

• Design metrics to be used

• Supplementary information

Appendices

Presents information that supplements the design specification.
-Traceability Matrix -traces stated components and data structures to software requirements.
-Packaging and installation -special concerns.

• Roger S. Pressman and Associates, Inc.

• http://www.rspa.com/docs/Designspec.html

Reference

http://www.rspa.com/docs/Designspec.html
http://www.rspa.com/docs/Designspec.html

Technical Reviews

• Technical Reviews can be applied to
requirements, designs, or to code.

-Reviews are used to improve the quality of the system. They can involve requirements,
design, or code.

• Uncover errors.

Objectives of a Review

-Errors in code include functional, logic, or implementation in the software.
-Errors in design include logic of the system, functions performed the system or by
components which the system accesses.

• To verify requirements.

-To ensure that the software being reviewed meets its requirements.

• To ensure the software meets a standard.

-This ensures that the system is being designed as expected. There are no surprises in the
development due to standards not being followed.
-Standards could be internal (the developers, the client) or external (government).
-These standards could include tools, formatting of work, regulatory bodies, interaction with
other systems.

• For system uniformity.

-To ensure that different parts of the system have a uniform development style.
-For example, structure of program components or the language used in design or
requirements should be uniform.

• To make projects more manageable.

Do that!

-To provide a point where managers can influence the design and development of the
system.
-Goals of this include the previous points. The idea is that a manager has the opportunity to
affect the development so they can manage it.

• Training

-The technical review meeting serves as an opportunity for junior developers to observe
different approaches to analysis, design, and construction.

• Continuity of the team.

-The review process ensures that number of people who are familiar with parts of the system
is larger than it would normally be. This ensures that if people leave the team there will be
others who understand the system they were working on.

• Reviews can take several forms.

-They can be walkthroughs, inspections or others small group assessments.
-A review is conducted as a meeting. It must be planned (have an agenda), managed (have a
chair), and attended by the appropriate developers.

• Every review should follow some rules.

-Three to five people should be involved. Too many and it becomes difficult to contribute.
-Each person should prepare but should require no more than two hours to prepare. If it
requires more than this then it is asking for too much to be accomplished.
-The meeting should be less than two hours. More time means you have too large a goal for
one meeting.

• Focus on a specific and small part of the
system.

-Do not review an entire design. Focus on a component or collection of small component.
-A narrow focus is more likely to uncover errors.

• Initiating a review.

-Once a components (e.g. partial requirement specification, component design, or section of
source code) is ready for review its developer requests that the project leader schedule a
review.
-The person in charge of the review determines if the component is ready. If it is they
schedule the review and send the materials for the review to those who will attend.

• Review attendees.

-The meeting chair (review leader), the reviewers, and the developer of the item being
reviewed.
-One reviewer takes notes of important issues raised during the review.

• Review process.

-The developer gives a brief introduction to the component.
-The developer then walks through (describes) the component.
-Reviewers raise issues based on their preparation and the developer’s description.
-It can be useful to have someone other than the developer perform the walk through. They
will provide a literal interpretation of the component which will make errors more obvious.

• At the end of the review.

-The committee decide whether to either accept the component as it is or with minor
changes, or to reject it due to severe errors.
-Rejected components must be reviewed once errors have been corrected.
-Someone is given the responsibility to ensure that the changes are implemented.

• Guidelines for reviews.

-Review the product, not the producer. The objective is to be constructive and not to
embarrass the developer. The process is said to be egoless because it is directed towards the
product.
-Set and agenda and maintain it. Meetings can drift off topic and waste a lot of time. Do not
be afraid to redirect the meeting if it is off topic.

• Guidelines for reviews.

-Limit debate and rebuttal. Not all issues can be resolved during the review meeting. Do not
waste time in the meeting trying to resolve difficult issues. The meeting is there to identify
potential problems not to solve them. If there is not a quick resolution then the issue should
be recorded and discussed out side of the meeting.

• Guidelines for reviews.

-Make notes so the issues are properly remembered. Notes can be displayed during the
meeting so meeting reviewers can comment on the wording and priorities.

• Sample driven reviews.

-Reviewing all parts of a design or a program is probably the best solution but can be
impractical.
-The solution is to identify the components of the system with the largest number of faults
and then focus the reviews on those items.

• Software Engineering: A Practitioner’s
Approach, sixth edition, by Roger S.
Pressman, McGraw Hill, 2005.

References

Presentations

• Two Approaches

-The two approaches to presentations we will consider are the traditional presentation and
the more design oriented presentation.
-The traditional approach is often used for more complex technical talks but it is not a
requirement.
-The design approach is more effective at engaging the audience.
-Both types can be effective but you need to decide which is appropriate for your audience.
Traditional is easier to create.

• The Traditional Presentation

-Slides contain a fair amount of text.
-There are normally three to seven points on a slide. More than this is too dense.
-All of the key points are listed.
-The text is a guide for the audience and the speaker. They shouldn’t be able to get lost
during the presentation because everything is listed.
-These are most common in business environments. In some cases too much flashy design
may not appear professional. The large amount of text is seen as an accomplishment.

• The Traditional Presentation

-The presentation can become tiresome because of the quantity of information.
-The audience may spend more time reading the text instead of listening to the speaker.
-Is it appropriate for the slides to act as a guide or should the focus more on conveying the
information?
-Background images are often pointless and distracting.
-Images are generally not important.

• The Traditional Presentation

Introduction

Body

Conclusion

-There is normally an introduction, body, and conclusions.
-The introduction should explain to the audience why they should care about the
presentation. You are not writing a mystery novel. Explain the importance at the start.
-The introduction can contain a list which lists all of the parts of the coming presentation. It
can be appropriate to give this information to the audience but it is pointless to spend much
time on it. This is often used to fill time and doesn’t add much to the presentation.

• The Traditional Presentation

-The body is where all of the important details are presented. This should be the largest part.
-A common mistake is to provide too much background material and too little about the
topic you are discussing. If the audience is familiar with the background then they don’t need
to hear you discuss it. Keep the background material short.
-The conclusion is often a restating of everything which has been presented. Don’t dwell on
the less important parts. Don’t simply repeat what has been previously stated. Provide a
summary, not a list of points.

• The Traditional Presentation

-The number of slides in the presentation should not be too large or too small.
-If you are advancing the slides too often it becomes distracting (say one a minute on
average).
-The opposite is also true. If there is a long gap between slides then you should consider if
there are enough slides.

• The 1-6-6 or 1-7-7 Rule.

-This is a rule of thumb for traditional presentations.
-There should be one idea per slide, no more than six or seven lines of text, and no more
than six or seven words per line.
-The idea is to not overwhelm the audience but this can lead to very dense, hard to read, and
tiresome slides.

• Traditional Slides

-They look like this.

• Common Slide Mistakes

-Too much text on the slide.

• Common Slide Mistakes

-Too much math (equations) on the slide.

• Common Slide Mistakes

-Too busy a background texture.
-Too complex an image or diagram.
-Overuse of slide transitions.

• Common Slide Mistakes

-Don’t get too creative with text colours and background colours.
-Many colour combinations which look good on a computer monitor are difficult to read
when projected onto a presentation screen.
-Keep the contrast between the text and background high.
-Don’t change the fonts. Pick one or two and use them consistently.

• Presentation Mistakes

-Don’t read the slides. The audience doesn’t need to you read to them. They need to you to
explain the ideas.
-Look at the audience.
-Practice the presentation. Especially if you are new to giving presentations or are nervous.

• Presentation Mistakes

-Time yourself so you don’t go on too long (this is rude). Bring a watch.
-It looks amateurish if you have to skip past the last few slides because your presentation is
too long and you cannot finish presenting the material.

• Presentation Mistakes

-Avoid laser pointers unless there is a real need to point and even then be careful in using
them. They are mostly used improperly. Don’t shine them at the audience.
-Try to avoid repeated patterns in your behaviours. These can be speech patterns, gestures,
or breathing. Speech patterns are repeated phrases which don’t really add anything to the
statement (e.g. in any case, so on and so on, basically). Breathing problems can come from
nervousness. These can include holding your breath and occasionally gasping or deep sighs.

• Presentation Mistakes

-Relax (if possible). It’s easier to think about and discuss your ideas if you are relaxed.
-If you are very nervous then the solution is preparation and practice. Prepare by thinking
about the likely questions you will be asked. Practice so you are more comfortable.
-Practice will also let you time the presentation so you will know how long it will be. People
often speak faster during the real presentation than during practice.
-Develop a plan and keep to it. Avoid the temptation to ad lib unless you are absolutely sure
it is necessary.

• The Designer’s Approach to Presentations

-It does not aim to provide as much detail on the slides.
-Detailed information is provided through other sources such as handout notes, links to web
sites, or references to books.
-The slides from this kind of presentation are not a document. They are a collection of points
and images which support the verbal component of the presentation.
-Making the slides into a handout tends to create a poor handout and poor support for the
presentation.

• The Central Point

-This approach focusses on conveying a central point. This is the one thing that the audience
should remember from the presentation.
-You should answer two questions during the presentation which are: What is your point and
why does it matter?
-Think about your audience and try to answer these questions from their perspective. It is
easy to forget that they don’t have the same experiences as you. Things which are obvious to
you may not be obvious to the audience.

• The Elevator Test

-Could you explain the main idea of the presentation in 30-45 seconds (the time of an
elevator ride)?
-If you cannot then you don’t have a clear statement of the central point.
-For extremely technical topics this means that almost all details are removed and the results
are the primary message.

• How much time do I have?

• Who is the audience?

• What is their background?

• Why was I asked to speak?

• What is the purpose of my talk?

• What do they expect from me?

Questions about the presentation.

-You should know the answers to these before you make the presentation.

• Making Messages Stick.

-How do you choose the message so the audience will remember it?
-Do not use abstractions which the audience wont find compelling. Use language and ideas
which the audience will understand and appreciate.

Our mission is to become the international
leader in the space industry through maximum

team-centered innovation and strategically
targeted aerospace initiatives.

Or

...put a man on the moon and return him
safely by the end of the decade.

-The two messages address the same idea but which is more compelling?
-The first is CEO-speak and is neither comprehensible or memorable.
-The second is easy for people to relate and easy to understand.

• Simplicity

-You normally cannot put all of the details into the presentation. If you try then the main idea
will be difficult to understand because of the excess in details.
-Simplify the message to its core. This does not mean to “dumb down” the message but to
reduce it to the essential meaning.
-What is the key point?

• Unexpectedness

-People will be interested if you do the unexpected. Surprise them and you will get their
interest.
-A good way to do this is to pose questions which the audience will want to know the answer
and then fill in the gaps in their knowledge by answering the question.

• Concreteness

-Use natural speech and give real examples. Do not use abstractions.
-The presentation will be easier to remember.
-People will remember things they can visualize.

• Credibility

-We can use numbers and statistics to support claims. They are most useful when presented
so the audience can relate to them. Instead of listing the numbers put them into a context
the audience can understand (e.g. you can browse the web twice as fast, your database needs
half of the maintenance).
-Quotes from experts, clients, or the press can be useful.

• Emotions

-Images can cause strong emotional responses in the viewer and make them feel something
about the topic.

• Stories

-Stories provide a good way to make ideas memorable.
-They provide a context which is easier to remember than a list of points.
-They make the presentation seem authentic. Not just a collection of ideas which have been
stuck together.

• Sample Designer Slides

-The emphasis is on images with small amounts of text.

• Brainstorming

Steps in Developing a Designer Presentation

-Collect ideas for the presentation.
-Don’t edit them much at this point. That can happen later.
-Attempt to understand all aspects of the issue.
-If there is a client then this can be similar to requirements gathering.

• Group and identify core ideas.

-Identify the one idea which you want the audience to remember.
-If you have multiple ideas which are similar then group them together and look for a
unifying theme.
-Divide the presentation into sections. Each section supports the theme but can present
different ideas. Three sections are a good number because it provides a memorable structure
but the number of sections is not fixed.

• Storyboarding

-Organize key points and sketch images. Both are done on paper.
-This allows you to built the story without committing too much effort to the implementation.
It is always possible to write another note or change a picture.
-The sketches for the slides can be rearranged easily at this point.
-You can skip this step if you have a clear idea for the structure.

• Create the slides

-Using the storyboard create the slides for the presentation.
-Normally start with a description of the problem and then follow it with the sections which
describe the solution.
-When you are done go back to the start of the presentation and edit it. Remove anything
that isn’t essential. When in doubt, remove it.

• Not everyone agrees.

-Elaborate presentations are not universally seen as the best way to do business.
-Perhaps neither the traditional or designer’s approach is appropriate.

• "when the anthropologists look back
on the 1980s and 1990s and do the
archaeological digs, and get their
callipers and brooms and microscopes
out, they will blame the massive
reduction in productivity during the
1980s and 1990s entirely on
Microsoft Office." -Scott McNealy

-Scott McNealy is the chairman, president, and founder of Sun Microsystems.
-The PC is ubiquitous, and every desktop in every office, of every programmer, secretary,
manager or filing clerk has a full-blown office 'productivity' suite.
-It focusses thoughts into bullet points when broader thinking may be more appropriate.

• “...now we've got highly paid people
spending hours formatting slides
because it's more fun to do that than
concentrate on what you're going to
say... ”

-It would be more efficient to give that work to lower paid employees who could do it faster
and probably with better results.

• Millions of executives around the
world are sitting there going, 'Arial?
Times Roman? Twenty-four point?
Eighteen point?

-Quote from Scott McNealy in The New Yorker, May 28, 2001.

• “We had 12.9 gigabytes of PowerPoint slides on
our network. And I thought, 'What a huge waste of
corporate productivity'. So we banned it. And
we've had three unbelievable record-breaking fiscal
quarters since. Now I would argue that every
company in the world, if it would just ban
PowerPoint, would see its earnings skyrocket.
Employees would stand around going: 'What do I
do? Guess I've got to go to work.’”

More from Scott McNeily

-From San Jose Mercury, 3 August 1997.
-The office suite moved from the secretaries desk to the computer of everyone in the
organization.
-The negative effect of this is that it promotes elaborate communications when simpler
methods would suffice. It is now expected that elaborate documents will be provided.

• “give everybody plastic Mylar sheets and all
the pens they need to scribble on them”

McNealy’s Solution

-In large corporations it is common for spend a lot of time preparing documents which exist
only to impress managers but are largely unread.
-A full office suite encourages managers to expect to receive good looking documents.

• Microsoft estimated that Powerpoint was
used to create 30 million presentations a
day in the year 2000.

-How many hours were spent creating 30 million presentations?

• The US Navy Secretary Richard
Danzig has announced that he
is no longer willing to sit
through slide shows, saying
that they were necessary only
if the audience was
"functionally illiterate". Too
much time and effort is spent
messing with PowerPoint, and
not enough is spent on the
message.

Others Agree

• Presentation Zen: Simple Ideas on
Presentation Design and Delivery, by Garr
Reynolds, New Riders, 2008.

• http://www.presentationzen.com/

• http://tuxdeluxe.org/node/38

References

http://www.presentationzen.com
http://www.presentationzen.com
http://tuxdeluxe.org/node/38
http://tuxdeluxe.org/node/38

Paper Prototyping

• A Prototype

-A model which something is based on. An early design.
-It is built with the understanding that it may be incorrect and will probably need to change.
-They are used to try out ideas.
-They are generally not complete models.

• What is a paper prototype?

-It’s a way to brainstorm, design, test, and communicate user interfaces.
-It can be used for almost any interface, including telephones, car dashboards, handheld
games, or computer applications.

• How does it work?

1. You meet with the development team and choose the type of user who is most important
audience for the interface.

• How does it work?

2. Determine some typical tasks the that you expect the user to do.

• How does it work?

3. Make screen shots or sketches of all of the windows, menus, dialog boxes, pages, data,
pop-up messages, and other interface components that are needed to perform those tasks.
This can also be done on a whiteboard.

• How does it work?

4. Perform a usability test. Get a user that the team previously identified to interact with the
prototype. They “click” things by touching them and they fill in text by writing on the
prototype. One of the developer plays the role of the computer and manipulates the paper to
simulate the interface. Another developer acts as a facilitator and manages the session. The
user explores the interface by interacting with it. An observer takes notes.

• What does this tell you?

-You will find out which parts of the interface work well and which are trouble spots.
-Since the prototype is done on paper you can easily modify it after or during the test.
-You can conduct several tests quickly and it generally doesn’t take long to identify a pattern
in the feedback you receive.
-You can rapidly iterate the design based on real user input before any code is written.

• Roles in a usability test.

-User, computer, facilitator, and observer.
-There can be multiple people in each role, especially observers.

• What is and is not required?

Required
-Interactivity with the user. -Real text.
Not Required
-High quality final interface designs that include colour, font, artwork, and layout choices.
-Filler text.
-A storyboard or flowchart showing all interaction. This is not interactive.

• Benefits.

-Feedback before any code is written.
-Promotes rapid iteration. You can experiment with different ideas rather than just one.
-Facilitates communication within the development team and with the user.
-Does not require any technical skill. You can train almost anyone to participate.
-Encourages creativity in the development process.

• Usability or User Centred Design.

-The goal is to make the interface better for its intended audience and purpose.
-A quote from Donald Norman, “you know you’ve got it right when your customers don’t talk
about how usable the product is...they are too busy raving about how you’ve make their life
better.” In other words, the interface disappears and doesn’t get in the way of using the
product.

• Graphical Interface Components

-Common interface components include, pull down and pop up menus, buttons, radio
buttons, labels, checkboxes, text fields, scroll bars, list boxes, window, title bars, menu bars.

• Don’t try to build a working prototype.

-Don’t try to build the application before you know what is required.
-Drawing the interface using a software tool is easy but that isn’t sufficient to prototype it.
-The hard part is linking the interface components to the code. Code must be written and it
must be linked to the interface components. It is much more time consuming than paper
prototyping and is much more difficult to change.
-No matter how fancy the interface tool is, it isn’t as easy to use or change as paper.
-The coding effort with paper is always zero.

• Other Benefits.

-An roughly drawn prototype encourages the user to provide feedback.
-Since it seems like it is still a work in progress they are more comfortable giving feedback.
-A slick, finished looking diagram can make the user think that everything has been decided
and they shouldn’t suggest anything too drastic.
-Users are encouraged to participate by the rough appearance prototype.

• Other Benefits.

-The user wont be encouraged to provide feedback about minor visual problems.
-When something appears finished the minor flaws stand out and will draw the user’s
attention. Comments like, “those don’t line up” or “I don’t like that shade of green” are more
likely to occur.

• Other Benefits.

-The user wont like the interface too much. If the interface looks too good then the users
may resist changing it. They can resist change even if it is required.

• The Iceberg Secret.

-From Joel Spolsky.
-Just as an iceberg is 90% underwater, most of the work which goes into a software
application cannot be seen. The interface accounts for about 1-5% of the development effort.
-This is something that non-programmers do not understand.

• If you show a nonprogrammer a screen
which has a user interface that is 90%
worse, they will think that the program is
90% worse.

Important Corollary One

-If you have 100% of the functionality finished but the interface looks incomplete the client
will complain about how poor it looks.

• If you show a nonprogrammer a screen
which has a user interface that is 100%
beautiful, they will think the program is
almost done.

Important Corollary Two

-People who aren’t programmers think the interface is the program. If it looks good then it
must be good.
-If it takes you a long time to finish the functionality they wont see what you are doing and
think it is nothing.

• Other Prototyping Benefits - Creativity.

-More creativity for the designers. They can get an opportunity to radically redesign the
interface once they have had some experience with it. It helps them build an understanding
of the system and lets them develop different ideas.

• Other Prototyping Benefits - Multidisciplinary.

-Multidisciplinary teams can participate. Customer support representatives and trainers can
provide insights into what customers find confusing.
-Anyone who has knowledge of the subject area can contribute. Such as technical writers,
marketers, trainers, etc.
-Paper prototyping facilitates incorporating many people’s ideas.
-It allows early communication across disciplines.

• Other Prototyping Benefits - Solves Arguments.

-Arguments based on opinions on the best way for users to do something can waste a lot of
time. They are nasty disagreements that are usually based on unspoken assumptions and
where there is no good evidence either way.
-A paper prototype allows you to determine which assumptions about the interface are true.
The argument turns into, “we’ll test it with some users.”

• something to hold the prototype, such as
cardboard

• paper, post-it notes

• markers, a highlighter

• scissors

• tape

• glue stick

• overhead transparencies

Useful Supplies

-The overheads can be placed over the prototype so the user can write text where they would
type.

• Paper Prototyping: The Fast and Easy Way
to Design and Refine User Interfaces, by
Carolyn Snyder, Morgan Kaufman
Publishers, 2003.

• Joel Spolsky web site:
www.joelonsoftware.com

References

http://www.joelonsoftware.com
http://www.joelonsoftware.com

Agile Software Development

• Iterative Software Development

-Iterative and incremental development.
-Requirements and solutions evolve through collaborative teams.

• Reaction to previous methods.

-A response to the heavy weight, non agile, methods such as Waterfall.
-It’s creators suggest that it is a return to software development methodologies from earlier.

• Individuals and interactions over process
and tools.

Agile Values

-Agile developers identified four values which they believe are most important for software
development.
-The first is that the active involvement of people during development is more important
than rigidly following a process.

• Working software over comprehensive
documentation.

-Software is the most important part of the development so it should take precedence over
documenting the process.

• Customer collaboration over contract
negotiation.

-It is better to have customers involved during the development process then it is to try to
negotiate all of the possible options before development begins.

• Responding to change over following a
plan.

-Following a plan should not be more important than changing to a more correct solution.
-A plan should not be used as an excuse to produce an incorrect solution.

• Customer satisfaction through rapid
delivery of useful software.

• Welcome changing requirements, even late
in the development.

Twelve Principles

-The creators of the agile manifesto also proposed twelve important principles.

• Working software is delivered frequently
(weeks instead of months).

• Working software is the principle measure
of progress.

• Sustainable development, able to maintain a
constant pace.

• Close, daily cooperation between business
people and developers.

• Face-to-face conversation is the best form
of communication.

• Projects are built around motivated
individuals, who should be trusted.

• Continuous attention to technical
excellence and good design.

• Simplicity.

• Self-organizing teams.

• Regular adaption to changing circumstances.

• Agile Methods.

-There are many agile methods. These include Extreme Programming and Scrum.
-They promote development, teamwork, collaboration, and adaptability throughout the
software lifecycle.
-Agile methods break tasks into smaller part with minimal planning and do not directly
involve long term planning.

• Iterations

-Each iteration involves the team working through a full software development life cycle
including planning, requirements analysis, design, coding, and unit testing.
-The final stage is acceptance testing where the product is demonstrated to the stakeholders.
-Iterations generally last from one to four weeks.
-Risk is minimized because of the short timespan and clear goals.
-One iteration may not be a completed product but the goal is to have a releasable product
at the end of an iteration. Multiple iterations will generally be needed to complete a product.

• Teams

-Teams normally organize themselves without consideration of existing corporate hierarchy.
-Team members take responsibility for the tasks which the current iteration requires.
-A team normally contains five to nine people which is small enough to simplify
communications and collaboration.
-Larger projects can involve multiple teams which can work on a common goal or on
different parts of an effort.

• The Customer Representative.

-Each team must have a customer representative who is appointed by the stakeholders to act
on their behalf.
-They must be available during the iteration to answer domain specific questions.

• When an Iteration Ends.

-The stakeholders and the customer representative review the progress and re-evaluate
priorities to ensure the project meets the goals.

• Daily Meetings.

-Most agile methods have brief and daily, face to face team meetings.
-Team members report what they did yesterday, what they intend to do today, and what
problems have appeared.
-This exposes problems when they arise.

• Adaptive versus Predictive Methods.

-Agile development is no unplanned or undisciplined. The teams may use highly disciplined
techniques.
-It is more accurate to say they use adaptive methods to develop software instead of
attempting to predict all development choices before the software is written.

• Adaptive Methods.

-Adaptive methods focus on changing focus quickly when reality changes or when it
becomes more clearly defined. When the needs of the project change, the team changes as
well.
-The further away a date is the more vague an adaptive team will be about what will happen
on that date.

• What agile is not.

-It is not an unstructured free for all where the developers do what they feel is right.
-It is not an excuse to ignore all structure and just write some code. It involves a clearly
defined and rigid process which is controlled.
-The flexibility and acceptance of change does not mean that it is trivial.

-It is meant to be fun.

• Brainstorming

-Group creativity technique.
-Used to generate a large number of ideas to solve a problem.

• Good Features.

-Boosts morale.
-Enhanced work enjoyment.
-Improves team work.

• Not so good features.

-There is no evidence it produces more or better solutions than an individual.
-Can be distracting.
-Can lead t social loafing. When people work less hard because they are in a group. They feel
their efforts are under appreciated, or if the task is not important, or if they think they can
remain anonymous and not be evaluated.

• Four Rules.

-The four rules are to reduce social inhibitions to participating and to stimulate ideas and
creation in the group.

• Rule 1 - Quantity will lead to quality.

-The ideas is that the larger the number of ideas created, the greater the chance that a
radical and effective solution will emerge.
-Is quantity really the route to quality?

• Rule 2 - Don’t be critical.

-Criticism should be withheld until after the ideas have been generated.
-Participants should focus on generating ideas.
-By suspending judgement the participants will feel free to generate unusual ideas.

• Rule 3 - Welcome unusual ideas.

-To generate a long list of ideas the unusual must be accepted.
-They can be generated by looking at ideas from a new perspective and by suspending
assumptions.
-The new way of looking at the problem may provide better solutions.
-It can be more fun and productive if wildly impractical ideas are presented.

• Looking at the problem with a new perspective.

-If the product is currently a boxed product can, it be made a web service?
-If it is a niche market, can it be expanded?
-If it requires specialized knowledge, can it be made simple for a new audience?
-If it is used by artists can, it be remade for scientists or business people?
-If it is specific to one task, can it be changed to another or can more be added?

• Suspend assumptions.

-We only write software for a particular type of client.
-It is impossible to make the software do something.
-There is no one who would use the software on that platform, in that industry.
-Only technical or non-technical people will use the product.
-Some group has no need for the product.
-Selling software is our only business.

• Rule 4 - Combine new ideas.

-The ideas may combine to form new and even better solutions.
-It builds ideas through associating different ideas with each other.

• Before the Brainstorming Meeting.

-Set a problem that is not too large to solve in the session.
-Make a question which is to be solved.
-The question should be specific. For example, “what does our product not currently do?”
-If the problem is too large it can be divided into subproblems. Each of these will have its own
question.

• When You Call the Meeting.

-Provide information for the participants.
-Provide a description of the problem question and some sample solutions.
-Identify the participants for the meeting.
-From five to seven people are a good size for the group.
-Provide a time limit. Thirty minutes is often enough. The larger the group, the more time
will be needed. Alternatively, provide an idea goal. This is a number of ideas which must be
created before the meeting ends. Normally 50 or 100.

• During the Meeting.

-Someone facilitates (manages) the meeting and someone records ideas.
-If the group gets stuck then the facilitator suggests an idea in order to stimulate discussion.
-Ideas are not normally presented in a structured order. Participants present them as they
think of them.

• During the Meeting.

-The person recording ideas may repeat their notes to ensure they understand the ideas.
-Managers may be discouraged from attending as it may cause people to feel uncomfortable
presenting unusual ideas.
-At the end of the meeting the list is reviewed to ensure everyone understands it and
duplicates are removed.

• A More Specific Brainstorming Method.

-It starts the same as previously mentioned with a 30 minute meeting and a goal of 50 or
100 ideas.
-Once it starts, participants present ideas which are written on a board or chart so everyone
can see them.
-All ideas are accepted and written down. Laughing is encouraged but criticism is not.

• A More Specific Brainstorming Method.

-Once the time is up, select the five ideas which everyone agrees are the best. This can
involve voting.
-Write down about five criteria which can be used to judge which ideas best solve the
problem. These should start with the word “should,” for example “it should be legal”, “it
should be finished by November 28th.”

• A More Specific Brainstorming Method.

-Give each idea a score of zero to five depending on how well it meets the criteria.
-Once all ideas have a score for each idea, add up the scores.
-The ideas with the highest score is the best solution.
-Keep a record of the other ideas in case the best solution turns out to be infeasible.

• Visual Brainstorming.

-A different approach which solves some of the problems found in regular brainstorming.
These include criticizing ideas during the session, dominant personalities, fixating on a
seemingly good idea too quickly, and the noisy chaotic environment of a session.
-The intention is to collaboratively generate ideas without a lot of speaking or writing.

• Visual Brainstorming.

-Items are used to imitate the product.
-This is much like paper prototyping but isn’t restricted to interfaces.
-A question is posed at the start of the session.
-Instead of shouting out ideas, the team works to build a model of the product.
-Criticism is still prohibited.
-Talking is acceptable but any idea must be implemented in the model.

• Visual Brainstorming.

-The group make break into different teams if different ideas are being pursued.
-Once the model is completed the team presents the features and the logic behind the
features.
-The ideas are then compiled into a report and evaluated.

• Visual Brainstorming.

The benefits of visual brainstorming:
-no one can avoid participating, if you aren’t building something then it is obvious
-no one can dominate if everyone is working on part of the problem
-there are fewer distractions
-it is more difficult to be critical of other’s work

• http://en.wikipedia.org/wiki/Brainstorming

• http://www.mindtools.com/brainstm.html

• http://www.jpb.com/creative/
brainstorming.php

• http://www.jpb.com/creative/
visual_brainstorming.php

References

http://en.wikipedia.org/wiki/Brainstorming
http://en.wikipedia.org/wiki/Brainstorming
http://www.jpb.com/creative/brainstorming.php
http://www.jpb.com/creative/brainstorming.php
http://www.jpb.com/creative/brainstorming.php
http://www.jpb.com/creative/brainstorming.php

Successful Software
Designs

-What made some software successful?

• UNIX

-Ken Thompson and Dennis Ritchie and others, creators of Unix. Ritchie also created C at Bell
Telephone Labs.
-Developed in 1969 at Bell Labs. Based on another operating system named Multics.
-Has been ported to almost every hardware platform.
-Open source versions such as Linux and BSD have become popular.
-Why is a 40 year old operating system still popular?

• Portable

• Multi-tasking

• Multi-user

• Time sharing

Unix was designed to be:

-The design ideas.
-Many were new at the time UNIX was created.
-It was written in a high level language instead of assembly language so it was easier to port
to other platforms. Other operating systems did this (Multics, Burroughs) but UNIX
popularized it.

• store information as plain text

• hierarchical file system

• treating devices and some networking as
files

• a large number of tools

• stringing together small programs through
the shell and pipes

The Unix philosophy:

-The ideas which went into building it were useful and robust. They have demonstrated that
they can be very powerful.
-Treating devices as files simplified access to them. It provided a uniform interface to
printers, keyboards, disks, etc.
-Operating systems of the time often did not have hierarchical file systems. They divided
disks up into sections that had a fixe number of levels, often only one.
-The shell allowed users to string together small programs into producer-consumer
pipelines. Modularity and reusability became important concepts practices because of this.

• The UNIX Kernel

-A special control program which manages the system’s resources.
-It controls the starting and stopping of programs (process control).
-It manages access to hardware. If two programs attempt to use the same device it allows
them to share access.
-It manages the file system (disks).

• Why was UNIX successful?

-It used many new technologies.
-It was easy to port to other platforms.
-It was stable and reliable.
-Many of the technologies involved proved to be powerful (e.g. hardware as files, linking
programs together, many small tools, hierarchical file system.
-It was given away to academic institutions. Student’s learned about it and went to industry.
-It was easy to extend. Network sockets and a GUI were additions.

• The C Programming Language

-C is a general purpose programming language developed in 1972 by Dennis Ritchie. It was
made for use on the UNIX operating system.
-Although it was made to write system software it has been widely used for application
software. It has been made an international standard.
-It has been ported to very many platforms.
-It has influenced the design of many other languages such as C++, Objective C, C#, Python,
Perl, Java, Javascript, PHP, the C Shell.

• Why was C so successful?

-It could be compiled into an efficient executable program. This reduced the need to use
assembly language. It is easier to use than assembly language. (It was easy to create
programs which executed efficiently).
-It provided direct access to things like memory, files, and processes. It didn’t get in the way
of communicating with the operating system resources.
-It is relatively easy to port a C program to a different platform with little change to the code.

• Why was C so successful?

-Libraries are used to extend the functionality of the system. Users could create their own
libraries to add more functionality.
-It allows dynamic memory allocation. So the amount of memory the program uses can be
determined when the program is running.
-It provided a mix of high level language features (struct, loops, branches) and low level
operations (memory access, file manipulation, communication with the operating system).

• The C Keywords.

-The C language is very small. You can memorize all of the language keywords easily.
-There are other rules that must be followed to use the language, such as how variable names
are formed (must begin with a letter or number or _), how the keywords are used, and how
other symbols are used (+,-,/,*).
-What is a language verses a library? Why are printf and the math functions not listed here?
They aren’t part of the language. They are extensions in libraries.

• The Spreadsheet

-VisiCalc was the first spreadsheet available for the personal computer.
-It is seen as helping the microcomputer (desktop computer) become a business tool. It has
been called the first killer application for the personal computer.
-It had many successors which were more powerful and refined.

• Why was the Spreadsheet successful?

-The user could define the data organization and the formulas applied to the data it was very
flexible. It could be used for many different types of calculations.
-The table layout of rows and columns was easy to understand and mirrored many existing
processes, especially financial calculations. It build on a familiar pre-existing model.

• The Database

-A database is an organized collection of data.
-It is used to quickly store and retrieve large amounts of data.
-This replaced the need to store large amounts of data on paper.
-It allows users to leverage the ability of computers to store large amounts of data on a disk
and search through that data quickly.

• The Web Browser

-The Mosaic web browser was released in 1993. Not the first browser, that was
WorldWideWeb, which was later renamed Nexus. Mosaic is credited with popularizing the
web.
-It was easy to understand, easy to install, reliable, and available on Windows. This made it
accessible to the public.
-It was the first browser to allow images and text in the same window. Previous browsers
opened separate image windows.

• Why was the web browser so successful?

-It was easy to use.
-It made information more available. Especially more esoteric information that might not be
published in books or magazines because it had too few readers.
-It made access to information easy for companies and individuals. Companies could put all
of their customer support on the web and not have to directly interact with most of their
clients. Individuals could put anything they wanted on the web which allowed much easier
access to an audience.
-A lot of paper documentation became electronic and more accessible.

• Why was the web browser so successful?

-It took the program off of the desktop and moved it to web servers. This meant the supplier
of the software didn’t need to support it on your computer. They needed to make its
interface accessible in a web browser and they could run it on their local machines.
-It allowed companies to change their traditional, expensive, method of having buildings,
storefronts, warehouses into electronic storefronts. Both large traditional retailers and small
specialty companies benefited.

• Email

-The first widely used digital text communication system. The email format from the early
1970’s looks similar to that of today.
-Alternatives at the time were the telephone, regular mail, or the fax.
-The ability to send text was new. Attachments were added later.
-It provided fast, easy communications for people who are not physically located in the same
place. It is less demanding than telephone communications.
-It provided a way to transfer large amounts of information.

Personal Ethics

-Ethics presentations normally involve a lot of case studies and discussion around what is
ethical.

• Unethical behaviour can be either
intentional or unintentional.

• You can be held responsible and even liable
for the consequences of your actions in
either situation.

• You are going to give a presentation to try
and win a contract for an air traffic control
system from a potential client.

• You are on an airplane and the person
sitting next to you is reading a document
about their bid for the same contract.

• You see that their company has found a
way to develop the software for 30% less
than your company.

A Case Study

-What is the correct thing to do? -say nothing and read as much as you can
 -start a conversation and try to learn more without revealing who you are
 -introduce yourself and let them know you are bidding for the same contract, and mention
your interest in the cheaper process, any information they reveal is then their choice
 -not use any information you learn, is it possible to unlearn something

• What if the developer is having a discussion
with a colleague and you can overhear it
without any action on your part?

• What if the developer left the report open
on his seat when he went to the bathroom?

• What if the report were left face down?
Would you turn it over?

Variations on the Last Case

-The outcome could be losing the contract or your job if you are caught. Your company could
be sued.
-Are you answering the questions based on the ethics of the situation or on the risk involved
in making each choice?
-What if your company was having financial difficulty? Would that affect you?
-Would you act unethically if you thought that you could get away with it?

• You overhear the two developers
discussing how they can create the
software for 30% less and they mention
working with a company that you know
about.

• This company is a front for an individual
who has been convicted of falsifying safety
documents and bribing safety inspectors.

Another Variation

-Your concern is now about public safety, not just economics. Would this change your
behaviour?
-Would you tell the developers about the company with which they intend to work?
-Would you use this to discredit their bid and win the contract?

• Failing to protect the public

Common Violations

-Failing to protect the safety, health, welfare, and property of the public by not notifying
employers or clients of such dangers.
-This also can occur if one fails to protect the safety, health, welfare, and property of the
public by approving documents or work that are in violation of professional standards. This is
particularly true for professional engineers.

• Morton-Thiokol (M-T) manufactures the
booster rockets for the space shuttle.
Management and representatives of NASA
were informed that there was an increased
probability that the engines (specifically the
O-rings) could fail to operate correctly as
the temperature increased.

Failing to Protect the Public Case Study

-This is what caused the space shuttle Challenger disaster.

• The M-T director of the solid rocket
booster project was Allan J. MacDonald. He
arranged a teleconference between M-T
and NASA engineers to discuss concerns
that a cold weather launch could be
dangerous.

• One engineer recommended that no
launch be attempted in temperatures of
less than 53 degrees Fahrenheit.

-The project director identified the problem and attempted to address it.
-A solution was identified.

• M-T was in the process of renegotiating its
contract to supply NASA with the solid
rocket boosters.

• A senior executive from M-T told the Vice
President of engineering to “take off your
engineering hat and put on your
management hat.”

• Company executives overruled the
concerns of their own engineers by voting
that the seals could not be shown to
be unsafe.

-Management did not want their product to look unsuccessful during a contract negotiation.
-Notice the clever use of wording.

• Morton-Thiokol’s Vice President for the
booster rocket program had to sign the
recommendation to launch document
when Allan MacDonald refused to sign it.

-The person in charge refused to acknowledge the engine was safe when there were serious
concerns that it was unsafe.

• Unethical disclosure of information

Common Violations

-Revealing information obtained in a professional capacity without prior consent of the
employer (who the information was obtained from).
-What happens if you move to a company which competes with your previous employer? Can
you forget the trade secrets of the first company? Can you differentiate between the
confidential and non-confidential information?
-The developer and the employers need to carefully identify what is confidential.

• The non-disclosure agreement (NDA)

-This acts as a promise to not release some information. They are fairly common.
-It is often used to limit the release of information about new products. The person who
signs the NDA can receive the information but they are not allowed to pass the information to
anyone else.
-Companies use them so they can tell other companies about their future products but they
do not want to release the information to the public. They can also be used during user
testing.
-Know what you are signing.

• Failure to include all pertinent information

Common Violations

-This involves not being truthful in reports or statements.

• Plagiarism - misrepresenting other’s work
as your own.

• Unauthorized Collaboration - working
together on work that is intended for
individuals.

Types of Misconduct

-Forms of academic misconduct that can apply to professional activities.
-Plagiarism can easily be avoided if you correctly attribute the work to the original author.
Using citations and quotation marks will often be sufficient.
-Minor changes to the work is not sufficient to make it your own. An idea can be plagiarized
even if the description is changed.
-Claims of “working closely together” are not justification for collaboration.

• Impersonation - having someone
impersonate oneself.

• Falsification - presenting false documents.

• Withholding - not releasing documents to
gain an advantage.

Types of Misconduct

-Impersonation can be in person or electronically. Both parties are at risk.
-Falsification can be false medical documents, false research findings, false credentials, false
or altered grades or time stamps.

• Unauthorized aids and assistance - to use
or obtain prohibited material. It includes
writing, research, and software services
which are prohibited unless specifically
allowed by the instructor.

• The Rent-A-Coder case was instrumental
in creating this form of misconduct.

Types of Misconduct

-This is a large category. It is directed towards services which do the work for their clients
who can then benefit from it.
-The claim that the work itself is not submitted and that it is used for studying purposes is
not accepted.
-In the Rent-A-Coder case, a student purchased assignments and then submitted them as
his own work. He claimed the work was used to study from and was not submitted directly.
Obtaining completed solutions became a new for of misconduct because of this case.

• Improper Access and Obstruction -
includes making it difficult or impossible to
access material, improper access to
materials, and improper dissemination.

Types of Misconduct

-Access includes destroying or hiding items such as library books or data files.
-Improper access includes copies of exams, tests, or assignments,
-Improper dissemination involves making confidential information available to the public.

• Is it acceptable for potential employers to
search their applicant’s history on the web?

• Is it acceptable to fire someone for posts
to a social networking page?

Social Networking and Ethics

-Everything on social networking pages is public. Access restrictions can limit who sees the
posts but they are not infallible and the people who are allowed access may not keep the
contents of the page a secret.
-Nothing on the internet goes away.
-According to a 2009 study by internet security firm Proofpoint, 8% of companies with more
than 1000 employees have fired someone for social media actions. This is double what was
reported in 2008.

• Feb. 26, 2009: A U.K. teenager was fired for
calling her job “boring.” According to The
Daily Mail, Kimberley Swann posted
comments such as, “First day at work. Omg
(oh my god)!! So dull!!” and “All I do is
shred holepunch and scan paper!!!” [sic].
Swann was canned after her boss
discovered the comments.

Fired by Facebook

• April 27, 2009: A Swiss woman was fired
after calling in sick and then logging into
Facebook on her “sick day.” Apparently the
woman had a migraine and called out of
work because she thought the light from a
computer would bother her and she
needed to lie in a dark room. When her
employer caught her surfing Facebook, it
was presumed that she was indeed well
enough to sit in front of a computer, and
she was let go.

Fired by Facebook

• August 27, 2009: Ashley Payne, a Georgia high
school teacher, was forced to resign after the
local school board came across pictures of her
sipping beer and wine. The pictures, which
appeared on Payne’s Facebook page, were from a
vacation she had taken that summer, which
included a trip to the Guinness Brewery in
Ireland. Payne was quoted as saying “I did not
think that any of this could jeopardize my job
because I was just doing what adults do and have
drinks on vacation and being responsible about
it.” She sued the school district last November.

• Engineering by Design, second edition, by
Gerard Voland, Pearson Education, Inc.,
2004.

• University of Guelph, 2010-2011 Academic
Calendar.

• Cytalk Web Site - http://
internet.cytalk.com/2010/09/how-to-get-
stupidly-fired-because-of-facebook/

References

http://internet.cytalk.com/2010/09/how-to-get-stupidly-fired-because-of-facebook/
http://internet.cytalk.com/2010/09/how-to-get-stupidly-fired-because-of-facebook/
http://internet.cytalk.com/2010/09/how-to-get-stupidly-fired-because-of-facebook/
http://internet.cytalk.com/2010/09/how-to-get-stupidly-fired-because-of-facebook/
http://internet.cytalk.com/2010/09/how-to-get-stupidly-fired-because-of-facebook/
http://internet.cytalk.com/2010/09/how-to-get-stupidly-fired-because-of-facebook/

Professional Communications

-A lot of this sounds obvious but it is easy to forget in heated discussion.

• How to deal with professional communications.

-You will be required to deal with people who have very different experiences than your own.
-They will have different expertise and experience than your own.
-You will need a range of presentation and listening strategies.

• Be Mindful

-Identify the role of the participants, the desired outcomes, and the options for
communications available to you.
-Is it best to use email, letters, memos, the telephone, meetings, etc.?
-Determine the best method of communications to achieve the desired results, not the
method which is easiest for you.
-Be aware that some people may be hesitant to provide information if they believe their
supervisor will learn about it.

• Be Flexible

-The development team can change which can prevent communications from being
consistent.
-Team membership can change, email may be down, management may redirect people to
other tasks, a new deadline may be imposed, and so on.
-Communication strategies must adapt to the situation. A method which worked previously
may not be effective again. Be aware of changes and evaluate the situation.

• Be culturally sensitive

-Be aware of acknowledge cultural differences.
-Do not be judgemental of different behaviours. They are simply differences and there is
nothing inherently good or bad about them.
-In a multicultural team make an effort to learn culturally appropriate behaviour.
-For example, is eye contact considered a sign of engagement or rudeness.
-There is a difference between asking, “can you do this” and “do you see a problem with this
approach.”
-Is using the person’s first name rude or acceptable?

• Be open and empathetic

-An open communication strategy requires that you be open to communicating. Pay attention
to the person you are communicating with. Do not look distracted or disinterested.
-Allow the user to speak. Listen carefully and do not interrupt. Listening can be more
effective at engaging the other person than speaking.
-You can summarize what they have just said before making your point. This lets them know
you are listening to them and that you respect their point of view.
-Using their name is can help but it can seem artificial if overused.

• Initially let them do most of the talking.

• Maintain eye contact.

• Appear willing to listen.

• Use non-verbal acknowledgements to
emphasize your attention.

A Listening Strategy

-Listen and nod your head.

• The I-Message

-Take ownership of your part of the discussion buy when stating your ideas by using
sentences beginning with, “I”. For example, “I didn’t understand that,” instead of “you
were unclear.” Statements that contain “you” sound more like criticism.
-This prevents criticism of the other person.
-Another example, “Your performance at the meeting was poor,” versus “I was disappointed
with your presentation at the meeting.”

• Be Positive

-Make statements that have a positive tone instead of a negative one.
-Instead of saying, “Your solution is stupid,” you could say “The other option looks like it will
be more effective.”
-Counterproposals should sound like improvements rather than replacements for ideas. This
will make them more acceptable.

• Be Honest

-Speaking your mind clearly and honestly may cause some initial discomfort but it is worth
the trouble because the issue being discussed can be fully resolved.
-In situations where there is a conflict involve there is less likelihood that it will reappear if
the issue is fully resolved.

• Be Fair

-Keep focussed on the current discussion.
-Reminding people of past offences, using unrelated examples, or changing the subject only
serve to add resentment to the relationship.
-Trying to one-up or browbeat someone will not lead to the destruction of the relationship
and will not create useful communications.
-Listen to the other person’s concerns and acknowledge when you are at fault.

• Avoid Pressure

-People don’t like to be emotionally pressured or verbally bullied.
-If you try to force them to cooperate then they probably will not cooperate at all.

• Avoid Anger

-Anger destabilizes rational thought and can lead to the loss of control of the situation.
-Keeping calm can lead to a discussion which will hopefully solve the problem.
-Anger will cause people to stop participating even if it is their fault.

• Non-verbal Communications

-This includes body language and tone of voice.
-When these don’t match the message the listener can be confused.
-If your body language says that you are not interested then the listener may not be want to
talk to you.
-The following statements are different depending on which words are emphasized, “I don’t
want to go out tonight” and “I didn’t say she stole the money.”
-If someone else is sending mixed messages the solution is to ask questions which clarify
their intent.

• When Speaking

-Recognize how you feel about the topic. If you understand your feelings then you can state
your concerns clearly.
-Avoid making emotionally charged statements about others. They will not create a desirable
situation. Avoid using statements about others using the work “you” as this sounds like an
accusation. It may make you feel better but it wont resolve the situation.

• Avoid Leading Questions

-These are intended to pressure the listener into agreeing with you.
-They reflect the values of the questioner more than the listener. They are not useful for
gathering information.

• Improving Communication Strategies

-Identify if you have any communications barriers that prevent you from saying what you
want to say.
-Common problems include the fear of what others’ reactions, lack of confidence, or
attempting to avoid failure.
-Try to develop strategies to overcome these problems. Acknowledge them if they exist and
try to address them.

• Guide to Interpersonal Communication,
http://cnx.org/content/m17115/latest/

• Interpersonal Communications: 6 Strategies
For Best Results, http://ezinearticles.com/?
Interpersonal-Communication---6-
Strategies-For-Best-Results&id=4458710

• Interpersonal Communication, http://
www.authorstream.com/Presentation/
aSGuest51297-425311-Interpersonal-

References

http://cnx.org/content/m17115/latest/
http://cnx.org/content/m17115/latest/
http://ezinearticles.com/?Interpersonal-Communication---6-Strategies-For-Best-Results&id=4458710
http://ezinearticles.com/?Interpersonal-Communication---6-Strategies-For-Best-Results&id=4458710
http://ezinearticles.com/?Interpersonal-Communication---6-Strategies-For-Best-Results&id=4458710
http://ezinearticles.com/?Interpersonal-Communication---6-Strategies-For-Best-Results&id=4458710
http://ezinearticles.com/?Interpersonal-Communication---6-Strategies-For-Best-Results&id=4458710
http://ezinearticles.com/?Interpersonal-Communication---6-Strategies-For-Best-Results&id=4458710
http://www.authorstream.com/Presentation/aSGuest51297-425311-Interpersonal-Communication-c-Entertainment-ppt-powerpoint/
http://www.authorstream.com/Presentation/aSGuest51297-425311-Interpersonal-Communication-c-Entertainment-ppt-powerpoint/
http://www.authorstream.com/Presentation/aSGuest51297-425311-Interpersonal-Communication-c-Entertainment-ppt-powerpoint/
http://www.authorstream.com/Presentation/aSGuest51297-425311-Interpersonal-Communication-c-Entertainment-ppt-powerpoint/
http://www.authorstream.com/Presentation/aSGuest51297-425311-Interpersonal-Communication-c-Entertainment-ppt-powerpoint/
http://www.authorstream.com/Presentation/aSGuest51297-425311-Interpersonal-Communication-c-Entertainment-ppt-powerpoint/

	01-Requirements
	02-Design
	03-Design-II
	04-Requirements
	05-DesignDoc-Fireball
	06-Design Doc Template
	07-Reviews
	08-presentations
	09-Paper Prototyping
	10-Agile Development
	11-Brainstorming
	12-SuccessfulSoftware
	13-PersonalEthics
	14-Communications

